

Custodia Security

Noya Review
Conducted By: Ali Kalout, Ali Shehab

Contents

1. Disclaimer 3
2. Introduction 3
3. About Noya 3
4. Risk Classification 4

4.1. Impact 4
4.2. Likelihood 4
4.3. Action required for severity levels 5

5. Security Assessment Summary 5
6. Executive Summary 5
7. Findings 7

7.1. High Findings 7
[H-01] _getPositionTVL reverts if the Pendle market is expired, leading to full
DoS 7

7.2. Low Findings 9
[L-01] Tokens in registry are not updated after supply 9

1. Disclaimer

A smart contract security review cannot ensure the absolute absence of
vulnerabilities. This process is limited by time, resources, and expertise and
aims to identify as many vulnerabilities as possible. We cannot guarantee
complete security after the review, nor can we assure that the review will
detect every issue in your smart contracts. We strongly recommend
follow-up security reviews, bug bounty programs, and on-chain monitoring.

2. Introduction

Custodia conducted a security assessment of Noya’s Pendle Connector
smart contract ensuring its proper implementation.

3. About Noya

NOYA represents a paradigm shift in decentralized finance, introducing a
protocol that empowers AI agents to control liquidity across multiple chains
with unparalleled trustlessness and precision. Engineered with a
foundational composable system, NOYA built from the ground up a secure
private keeper network, a trustless AI-compatible oracle, and a competitive
environment for AI architects alongside strategy managers.

4. Risk Classification

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

4.1. Impact

● High: Results in a substantial loss of assets within the protocol or
significantly impacts a group of users.

● Medium: Causes a minor loss of funds (such as value leakage) or
affects a core functionality of the protocol.

● Low: Leads to any unexpected behavior in some of the protocol's
functionalities, but is not critical.

4.2. Likelihood

● High: The attack path is feasible with reasonable assumptions that
replicate on-chain conditions, and the cost of the attack is relatively
low compared to the potential funds that can be stolen or lost.

● Medium: The attack vector is conditionally incentivized but still
relatively likely.

● Low: The attack requires too many or highly unlikely assumptions, or
it demands a significant stake by the attacker with little or no
incentive.

4.3. Action required for severity levels

● Critical: Must fix as soon as possible
● High: Must fix
● Medium: Should fix
● Low: Could fix

5. Security Assessment Summary

Duration: 26/04/2025
Repository: Noya-ai/noya-vault-contracts
Commit: 66eb63b87093a01b7a8837b4b279fcee300adf8b

● contracts/connectors/PendleConnector.sol

6. Executive Summary

Throughout the security review, Ali Kalout and Ali Shehab engaged with
Noya to review Noya. In this period a total of 2 issues were uncovered.

Findings Count

Severity Amount

Critical N/A

High 1

Medium N/A

Low 1

Total Finding 2

Summary of Findings

ID Title Severity Status

H-01 _getPositionTVL reverts if the Pendle market is
expired, leading to full DoS

High Resolved

L-01 Tokens in registry are not updated after supply Low Resolved

7. Findings

7.1. High Findings

[H-01] _getPositionTVL reverts if the Pendle market is
expired, leading to full DoS

Severity:
High

Description:
The PendleConnector::_getPositionTVL function does not properly account for
Pendle market expiry. When a market expires, Yield Tokens (YT) immediately lose all
value (their redeemable value becomes zero), and functions like getLpToAssetRate
and getPtToAssetRate may revert if called. Since _getPositionTVL still tries to
read LP and PT rates after expiry without checking, this causes a full revert. As a result,
any vault holding an expired Pendle position will experience a complete
denial-of-service (DoS) when trying to calculate TVL, blocking withdrawals, rebalancing,
and other dependent operations.

Proof of Concept:
function test_DoSAfterExpiry() public {

 chainlinkOracle.updateDefaultChainlinkPriceAgeThreshold(10 days - 1);

 uint256 amount = 100e6;

 _dealERC20(USDT, address(connector), amount);

 vm.startPrank(owner);

 connector.updateTokenInRegistry(address(USDT));

 connector.supply(pendleUsdtMarket, amount, 1);

 connector.mintPTAndYT(pendleUsdtMarket, 10e6);

 vm.warp(block.timestamp + IPMarket(pendleUsdtMarket).expiry());

 assertTrue(IPMarket(pendleUsdtMarket).isExpired());

 vm.expectRevert();

 accountingManager.TVL();

}

Recommendations:
Refactor PendleConnector::_getPositionTVL to account for the expired market:
function _getPositionTVL(HoldingPI memory p, address base) public view override returns

(uint256 tvl) {

 PositionBP memory positionInfo = registry.getPositionBP(

 vaultId,

 p.positionId

);

 if (positionInfo.positionTypeId == PENDLE_POSITION_ID) {

 uint256 underlyingBalance;

 address market = abi.decode(positionInfo.data, (address));

 (

 IPStandardizedYield _SY,

 IPPrincipalToken _PT,

 IPYieldToken _YT

) = IPMarket(market).readTokens();

 (, address _underlyingToken,) = _SY.assetInfo();

 bool isExpired = block.timestamp > IPMarket(market).expiry();

 if (isExpired) {

 // After expiry: only count SY

 uint256 SYAmount = _SY.balanceOf(address(this));

 // Burn LP manually if you want before calling TVL function

 // PT must be redeemed manually

 underlyingBalance = (SYAmount * _SY.exchangeRate()) / 1e18;

 } else {

 // Before expiry: normal behavior

 uint256 lpBalance = IERC20(market).balanceOf(address(this));

 if (lpBalance > 0) {

 underlyingBalance +=

 (lpBalance * IPMarket(market).getLpToAssetRate(10)) /

 1e18;

 }

 uint256 PTAmount = _PT.balanceOf(address(this));

 if (PTAmount > 0)

 underlyingBalance +=

 (PTAmount * IPMarket(market).getPtToAssetRate(10)) /

 1e18;

 uint256 SYAmount = _SY.balanceOf(address(this));

 uint256 YTBalance = _YT.balanceOf(address(this));

 if (YTBalance > 0) SYAmount += getYTValue(market, YTBalance);

 if (SYAmount > 0)

 underlyingBalance += (SYAmount * _SY.exchangeRate()) / 1e18;

 }

 tvl = valueOracle.getValue(

 _underlyingToken,

 base,

 underlyingBalance

);

 }

 return tvl;

}

7.2. Low Findings

[L-01] Tokens in registry are not updated after supply

Severity:
Low

Description:
PendleConnector::supply doesn’t update the underlying token in the registry, to
remove it from the connector’s position in case the remaining balance is below the
DUST level.

Recommendations:
Add _updateTokenInRegistry(_underlyingToken) just after the deposit
execution.

	
	
	Custodia Security
	Contents
	1. Disclaimer
	2. Introduction
	3. About Noya
	4. Risk Classification
	4.1. Impact
	4.2. Likelihood
	4.3. Action required for severity levels

	5. Security Assessment Summary
	6. Executive Summary
	
	
	
	
	
	
	
	
	
	
	7. Findings
	7.1. High Findings
	[H-01] _getPositionTVL reverts if the Pendle market is expired, leading to full DoS

	7.2. Low Findings
	[L-01] Tokens in registry are not updated after supply

